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Homogeneous condensation in the presence of a spatially uniform source producing a condensible
monocomponent substance is considered within the model assuming the condensation growth to follow
the scheme (g)+(1)—(g +1), with g being the number of monomers (molecules of the condensing sub-
stance) in the growing particle. The mass spectrum is expressed in terms of the function describing time
evolution of the monomer concentration. In contrast to the case of free condensation (no external
source) the mass spectrum is a smooth function of the particle mass with the frontal peak moving with
time to the right along the mass axis. The particle number concentration is shown to either grow unlim-
itedly with increasing time or remain finite, depending on how fast the condensation coefficients c,
describing the rates for monomer accretion grow with the particle mass g. For power dependencies
a, x g*, the condensation regime changes at A= % The analogy of this phenomenon with the second or-
,+ 4, 2, and 1 illus-
trate the characteristic features of the mass spectra in source-enhanced condensing systems. The cases

der phase transitions is marked. Numerical calculations for powerlike a, at A=0
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A=0and A=1 are treated analytically.

PACS number(s): 68.10.Jy, 44.60.+k, 64.60.Qb

I. INTRODUCTION

Although the investigation of the formation and
growth of disperse particles by condensation had started
rather long ago [1-5], a few works considered the con-
densation processes in the presence of a permanently act-
ing source of fresh molecules of condensing substance
(see, however, [6], and references therein). Meanwhile,
the situations where newly formed molecules of a con-
densing substance appear during the course of the con-
densation process are not as rare. It is enough to men-
tion the condensation of sulphuric acid molecules on wa-
ter droplets and other aerosol particles [7-9], formation
of aerosols from low volatile vapors [8-10], condensa-
tional growth of suspensions in liquids [11], and voids
and bubbles in solids [12].

In this paper, we study the following process: a spa-
tially uniform source whose productivity I (¢) is known as
a function of time ¢ provides the system with the mole-
cules of a condensing substance. These molecules may
then be involved in the growth process in three ways:

(1) Upon collision, two vapor molecules form a stable
dimer which then serves as a condensation nucleus, i.e., it
is able to grow by joining other monomeric molecules to
form g-mers (nonbarrier nucleation).

(2) The molecules start to nucleate. The nucleation
process produces overcritical disperse particles that serve
as condensation nuclei. Their production rate is connect-
ed with the function I(¢) and the rates of elementary
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processes for a monomer to escape from or condense onto
the g-mer surface.

(3) The molecules resulting from the source condense
on preexisting particles (heterogeneous condensation).

In what follows, we consider only the nonbarrier nu-
cleation leaving the other two cases for future work.
Starting with the set of equations describing the kinetics
of the condensation process in the presence of the exter-
nal source, we will show that the mass spectrum of form-
ing disperse particles can be expressed in terms of the
function describing the time dependence of the monomer
concentration. This function is derivable from an ordi-
nary nonlinear integro-differential equation. The solution
of the equation is found for two exactly soluble models
and three realistic cases corresponding to surface or
diffusion controlled growth of disperse particles. Respec-
tive growth laws are summarized in Ref. [6] where the
growth rates are shown to be power functions of the
growing particle mass.

The main result of our present consideration is the
recognition of the fact that the mass spectrum of con-
densing particles can be expressed in terms of the func-
tion describing time evolution of the monomer concentra-
tion. In contrast to the case of free condensation (no
external source) the mass spectrum is a smooth function
of the particle mass with the frontal peak moving with
time to the right along the mass axis. The particle num-
ber concentration is shown either to grow unlimitedly
with increasing time or remain finite depending on how
fast the condensation coefficients a, describing the rate
for monomer accretion grow with the particle mass g.
For power laws a, < g* the critical exponent is A=1
The analogy of this phenomenon with the second order
phase transition is emphasized.

The remainder of this paper is divided as follows. Sec-
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tion II gives a general statement of the problem and for-
mulation of basic equations for the case of nonbarrier nu-
cleation. The third section contains a formal solution of
the set of equation for the condensation process. We are
able to express the mass spectrum in terms of the func-
tion describing the time dependence of the monomer con-
centration and a Green’s function that can be found from
a set of linear ordinary differential equations. Two exact-
ly solvable models are introduced and analyzed in Sec.
IV. The condensation coefficients in these models are ei-
ther independent of the growing particle mass or depend
linearly on the latter. Exact Green’s functions are found
and rather simple differential equations are formulated
governing the time evolution of the monomer concentra-
tion. The exact results prompt a suitable approximation
allowing the general case to be solved in a more or less
closed form. The idea is that the respective Green’s func-
tions are very narrow peaks as functions of time which al-
lows one to reduce the particle mass distribution to a
combination of the monomer concentration as a function
of time and some simple functions of the condensation
coefficients and time. An asymptotic analysis of these
simplified equations is then performed and the laws of de-
creasing the monomer concentration with time are found
analytically for the condensation coefficients increasing as
a power of growing particle mass. All this is done in Sec.
V. The results are summarized and discussed in Sec. VI.
The paper concludes with several remarks on possible ap-
plications and the extension of the theory of source
enhanced condensation (Sec. VII).

II. BASIC EQUATIONS

We begin by considering the situation when the carrier
medium contains a spatially uniform source of condens-
ing molecules (monomers in what follows). We assume
the following:

(1) The monomers are able to form stable dimers,
growing them by joining monomers along the scheme

(H+() — (2)
2)+(1) — (3)
(g)+(1) — (g+1)

(2) The rate a, (condensation coefficients) of joining a
monomer to a g-mer is a known function of the mass g of
growing particle. Everywhere below a, is assumed to be
a power function of the particle mass g,

ag=ag’\ (1)

with 0<A <1. The justification of this choice can be
found in Ref. [6] where a wide number of growth process-
es in disperse systems are shown to be described by power
functions with A=1,1,2,1.

(3) The source productivity I (¢) is a known function of
time t. Here we consider the sources independent of
time.

Let ¢ (2),c,(0), ... ,cg(t) be the concentrations of
1,2, ...,g-mers (mass spectrum). The set of equations
describing its time evolution is of the form
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dc, I § )
—=I—c; > a,c, ,
dt e=1 g8
dc
—(7:—=%a,c%—a2clcz , (3)
dc,
7=ag_1clcg_1—agc1cg . (4)

These equations have quite a transparent physical mean-
ing. The change in the concentration of g-mers results
from two processes: (g—1)+(1)—(g) and (g)
+(1)—(g +1) [the first and second terms on the right-
hand side (rhs) of Eq. (4), respectively]. The first process
adds g-mers into the system while the second one leads to
their losses which stipulates the opposite signs of these
terms.

The first two equations of this set are of a different
structure. Equation (3) contains 1 before the first term
on its rhs that reflects the identity of two colliding mono-
mers. The right-hand side of Eq. (2) describes the mono-
mer production [the term I(¢)] and the sink due to
monomer capture by all forming particles.

This set of equations should be supplemented with the
initial conditions. We assume now that no disperse parti-
cles existed until # =0 which means that

¢(0)=0 . (5)

Let us write down two useful consequences of the
above equations. On summing all Egs. (3) and (4) over g
within the interval [2, « ) gives an equation for the num-
ber concentration N of aerosol particles,

——=1a,c] (6)

with N=3*_,c,. The summation in N begins with
g =2, since the monomeric molecules are not attributed
to the disperse phase.

The second consequence reflects the conservation of
the total mass concentration M ()= 3 _,gc,(¢). Multi-
plying both sides of the set of Egs. (3) and (4) by g and
summing again over all g >2 yield M =1 —¢, or

M :It ——Cl . (7)
The set of Egs. (2)-(4) is invariant under the scaling

transformation

c t I
co) b, T2, a2 8)
Co to I, o

once the subsidiary restrictions

Ity

a()Coto: 1, (9)

€o
are imposed on the characteristic scales of the transfor-
mation. These restrictions define the characteristic scales
of time and concentrations in terms of the scales of the
condensation coefficient and the source intensity (a; and
1,, respectively),
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In particular, the latter equations will allow us to put
I=1and a;=1in Egs. (2)-(4) under certain conditions.

10 , C0=‘/Io/a0. (10)

III. A FORMAL SOLUTION

The strategy for solving the infinite set of nonlinear
coupled differential Egs. (2)—(4) includes the following six
steps:

(1) Equations (3) and (4) are treated independently of
Eq. (2), the concentration ¢, being considered as a given
function of time.

(2) The new variable (see also Refs. [4,6])

7= [est"dr’ (11)

is introduced instead of z. This step casts Egs. (3) and (4)
into an infinite set of wuncoupled linear ordinary
differential equations affording the truncation at any g
not affecting the remaining equations containing the con-
centrations with higher numbers.

(3) The Laplace transform with respect to 7 reduces
these equations to a set of recurrence relations allowing
the Laplace transform of any concentration C,(p) to be
expressed in terms of C(p).

(4) On inverting C,(p) one finds the 7 dependence of c,,
which is then used to close Eq. (2) for ¢;(7). The ordi-
nary integro-differential equation thus obtained is avail-
able for further numerical and asymptotic analysis.

(5) The mass spectrum {c,(7)} is finally expressed in
terms of ¢,(7) and the Green’s function obeys the same
set of equations as ¢, (7) but with a 8-function nonunifor-
mity.

(6) There are no problems when returning from 7 to ¢
once c¢(7) is found,

tn= 4T (12)

0 ¢y(7)

Let us start to fulfill this program. The first step has
been done [see Eq. (11)]. Now Egs. (3) and (4) take the
form

dc, .

g Tl T, (13)
This equation contains the nonuniformity c,(7) which at
this stage is considered a known function of the new vari-
able 7. Other equations of this set are homogeneous,

dc,

dr

Let us apply the Laplace transform to Egs. (3) and (4).
Recalling zero initial conditions (5) one finds

=, g1

¢—1C¢ g% - (14)

(p +a2)C2=%a1C1 N (15)
(p+a,)Co=a,_,Cy_; » (16)
where
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Cop)= [ “eg(re~Pdr . (17)

The solution of the above set of linear algebraic equations
is readily found,

C,(p)=G,(p)C,(p), (18)
where
a,. . .Q,
G,(p)= . = . (19)

2(p +ay)(p ta3). . .(p +a,)
The inversion of Eq. (18) gives
Cg(’r)=fofgg(T—T')Cl(T')dT' , (20)

where §,(¢) is the inversion of G (p) and plays the role of
the Green’s function for the set of Egs. (3) and (4). It
obeys the same equations as c,(7) with the only difference
being that ¢,(7) in Eq. (13) is replaced by the Dirac &
function 8(7). The explicit equation for §,(7) can also be
written down,

g _qr 8 O,
1 S . 21)
s=2 r=2 %0
Here the prime over [] indicates that the multiplier with
s =r is omitted.

Equation (20) allows one to close Eq. (2),

dc, 5 . ' , '
cl__d'r =I“0101_81f0R(T‘—T Ye (r')d T . (22)
Here
R(1)=3 a,5,(7). (23)
g=2

IV. EXACTLY SOLUBLE MODELS

In this section, we consider two exactly soluble models
with specially chosen condensation rates Qg, (1) the con-
densation rate a, = is independent of the growing parti-
cle mass g and (2) the condensation rate a, =ag grows
linearly with the mass of the condensing particle. In
what follows, we put a=1 and I =1 (see the explanations
at the end of Sec. II). Although both these models do not
allow completely analytical results, they are of great im-
portance and use because they demonstrate explicitly the
structure of the solution. In addition, the second model
describes the condensation growth of fractal clusters in
the free molecular regime, so it is not so unrealistic [13].
Let us begin with the first case.

A. The model a=1

As follows from Eq. (19) the Laplace transform of the
Green’s function G, (p) is

1

G,(p)=——7— . (24)
P S e
The inversion of Eq. (24) yields
-2
Gylri== e (25)

e g —2n¢



52 SOURCE-ENHANCED CONDENSATION IN MONOCOMPONENT ...

On substituting this into Egs. (23) and (22) gives
dcl
Vdr

Exact mass spectrum now can be found with the aid of
Egs. (20) and (25),

=1—c?— —clf c(r')dT . (26)

Cg('T)_ _Tf (r—7')8 2 "c (r')dr . f27)

Further analytlcal results are impossible to get.

B. The model a, =g

The model a,=g allows more analytical results. In
this case;

(g —1)
200 +2)p+3)- - (p+g)

The inversion made with the aid of Eq. (21) gives so-
called Yule-Furry distribution (see Ref. [14]),

G, (1)= (1 —e T)E2 (29)

G(p)= (28)

Hg—1e™

This result is used to restore the function R (7) [see Eq.
(23)];

R(r)=e" (30)

and one can then write down Eq. (22) in the explicit form

dcl
1. =1—c?— clf e’

In this model, it is easy to find the dependence of ¢, on
t. Indeed, using the conservation of the total mass [Eq.
7)], Eq. (2) may be rewritten as

(d T (31)

—Jt——l—clt . (32)

Its solution is

2
5 T

¢ (t)=exp ds . (33)

f exp

The dependence of 7 on ¢ is also readily restored,

2 2
r S
_.._+_

2 5 (34)

T(t):fotdr fords exp

The integral on the rhs of this equation can be cast as fol-
lows (see the Appendix):

2.2
2

2
t—z—(x —x2)

sinh (35)

T(t)=2f01£1x£exp

Although the source permanently produces fresh
monomeric molecules, the particle number concentration
remains finite at t — . As follows from Eq. (6):
TV

o

—1lr= -
N(w)== [ “ctndr= (36)

The integral f 2(¢+)dt with c,(¢) given by Eq. (33) is
calculated in the appendlx.

1661

V. ASYMPTOTIC ANALYSIS

Although the preceding section gives the exact solution
of the problem reducing it to the solution of the ordinary
nonlinear integro-differential equation (22) with the ker-
nel R containing the Green’s functions &,, a further
analysis is almost impossible (except some exactly soluble
cases considered above) without the simplifications aris-
ing in the asymptotic limit g,7>>1. Actually this very
limit is of practical interest in the theory of condensation.

We begin this section by analyzing the asymptotic
behavior of the Green’s function &, then consider the
time asymptotics of the monomer concentration and
complete with the relations allowing us to link the parti-
cle mass spectra with ¢, (7).

A. Asymptotics of the Green’s function

Our objective now is to find the Green’s function &,(7)
at large g and 7. To this end let us rewrite Eq. (19) as fol-
lows:

g
— > In(1+p/ay)
s=2

G,(p)= 2a, exp (37)

The next step is the expansion of the logarithm in the
power series with respect to p,

4
DX 1+£—2a*2

Gg(p)= > )

exp

g

3 g
—%Ea;3~-- (38)

=2

Our idea now is to put the upper summation limits g = o0
in Eq. (38) where it is possible.

At L1 <A =1 only the first sum in Eq. (38) diverges and
the function G is the product of two multipliers the
second of which is g independent,

G.(p)=—L e P50, (p) . (39)
8 2a, 2
Here
g
Te=a (40)

and the function Q, is defined as (arbitrary n)

0,(p)=exp 41)

Equation (38) is then readily inverted by using the convo-
lution theorem,

S, (T)—- qz(T Tg)0(T, —7), (42)

where g,(7) is the Laplace inversion of Q,(p) and 6(x) is
the Heaviside step function, 8(x)=1 at x >0 and O other-
wise.

Since the function g,(7) has a peaklike structure, the
function §,(7) is the peak moving to the right. The
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width of this peak is of the order of unity.
If 1=A>1, the second sum on the rhs of Eq. (38)

dlverges,

—pza 1+L2a—2 0.(p). 43)

G (p)——exp
Qg =2 2.5

Now we can neglect the p dependence of Q; and the
Green’s function §,(7) is thus simply the Gaussian

(1—7g)?

S, (T)~ —V/1/27T2exp | — (44)

g g

g
= '\/ Sa%. (45)
s=2

The Laplace inversion of the divergent part is the Gauss-
ian curve with the width

with

r __»\/ za (l 2A)/2 (46)
at A1 and

I, <Ving 47)
at A= % The maximum of the curve is located at

Tmax=Tg <8' 7" . (48)

The ratio of the width to the maximum position drops as
(49)

(or Viing /g at g =1).
At A =1 the third sum in the expansion (47) begins to
diverge. The respective term contributes

3 s
P —3A 3,1— 37\. 50
DA 0

At small p < 1/T, this essentially determines the asymp-
totic behavior of the Green’s function §,(7) at large 7
and the contribution of the third and higher terms should
be ignored. The function §,(7) thus preserves the Gauss-
ian form [Eq. (44)] for all A <1

Now we are ready to return to c;(7) and then to the
mass spectrum. To this end we must find the function
R (7) [see Eq. (23)]. We start by replacing the sum on the
rhs of Eq. (23) with the integral. The next simplification
concerns the function §,(7) which has the peaklike struc-
ture with the width of the peak much smaller than its po-
sition. Since a, is a smooth function of g (powerlike in
our case) the function & can be replaced by the 8 func-
tion,

S, (T)~

(51)

This gives
R(T)=3a,9,(T)=faa(T) . (52)
g
Here we introduced the function a(7)=a,, where the
function g (7) is defined from the equality
_ remnds
= [ ) (53)

s

and we have replaced the sum in Eq. (40) by an integral.
Combining Egs. (22) and (52) gives the closed equation
for c,(7),
dc,

cld——I—alc%—%alclfora(T—T’)cl(T’)dT’ . (54)

This equation had been derived earlier in a different way
(6].

It is pertinent to mention here that the approximations
leading to Eq. (54) reproduce exact results [Egs. (26) and
(31)] when applied to the exact models considered above.

B. Asymptotics of monomer concentration

In this section, we will analyze the asymptotic behavior
at g,t>>1 of the monomer concentration c¢,(¢) and the
mass spectrum {c,(2)}.

Let us begin by considering the asymptotics of ¢,(¢).
In order to do this we again adopt the assumption (1) on
the power growth of the condensation rate and put a;=1
and I =1. Next, we neglect the left side of Eq. (54) and
the term quadratic in ¢;. Both these terms go to zero fas-
ter than the two remaining ones, so we have

1=%cl('r)f0 alr—7)e,(r)d 7 . (55)
Equations (1) and (53) give at large ¢,

alr)=[(1—=A)r 0 (56)

Assuming also that c¢,(7) drops as a power of 7

c(r)=Cr77, (57

one finds from Eq. (55),

-1
(e yrryl (58)

and

1 1—2A

A/(1=1) LA
—M B 1—A" 2(1—1)

-2 1
o 2( (59

where B(x,y) is the Euler B function. This solution is
valid at A<]. At larger A the integral in Eq. (55)
diverges and the analysis becomes more complicated.

At A>1 there is only one way to move ahead. In-
tegrating by parts the rhs of Eq. (55) gives
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[Tr=r MO (7yd e =0 [ Te ()dr +
0 0

Here we assumed that the integral [ o €1(7)d T converges.
It is not so at A <] and the above transformation is im-
possible. The next essential point is that the concentra-
tion ¢,(7) in Eq. (60) is exact [the solution of the full Eq.
(54)], which removes the problem of convergence of the
integral at the lower limit.

Now we can again start the procedure of balancing the
powers in the asymptotically valid Eq. (55). In doing so
we neglect the second term on rhs of Eq. (55), which is
small compared to the first one. The asymptotic 7 depen-
dence of ¢ then becomes:

c‘('r)zﬂ‘r_}‘/(l—m‘xT_A/“_M (61)
where
AT =LA [ e () (62)

This equation justifies all the above assumptions, (1) the
integral f o ¢1(7)d T converges at A>1/2, (2) the contri-
bution of the second term on the rhs of Eq. (60) is small
as 7~ (A7 D/U=M) 4t Jarge .

The case A=1 needs special consideration, for the in-
tegral f o ¢1(7)d7 diverges at the lower limit and the
trick leading to Eq. (60) does not work. The asymptotic
solution can be found only with a logarithmic accuracy
(InT>>InIn7)

V2 1
~ . 63
D e Ve 63

The transition from 7 to ¢ is done with the aid of Egs.
(12), (57), (61), and (63). The results are summarized in
Table I, giving the asymptotic dependency of monomer
and particle number concentrations on 7 and t. The
coefficients entering these expressions are shown in Fig.
1(a)-1(c) as functions of A.

C. Asymptotics of the mass spectra

In studying the asymptotics of the mass spectra we
again should consider separately two cases, (i) A> 1 and
(@) A=<1.

(i) At 1>A> 1, Egs. (20) and (42) give

TABLE I. Asymptotic time behavior of monomer and parti-
cle number concentrations (¢,7>>1).

0<A<% =1 <A<l A=1
CI(T) T~1/[2(1—?»)] I/TVE’ T-A/(I—A) e 7
cy(8) /B2 1/VtVint t* ¢!
N(t) t0720/6-20 VInt N, (L) (7V'm) /4

A
(1—2)

Jja=m P00 Rar [ e (d e (60)

% o , N
cg('r)zj;g-fo g (T—=Ty =7 ) (T)dT

!
=~ ci(r—7,) . (64)

20:g

Here we have used the fact that ¢,() is mainly a smooth
powerlike function whereas the function g,(7) is a nar-
row peak (its width is of the order of unity). This approx-
imation does not reproduce correctly the form of the
frontal peak (r—71, 1) which, however, is so narrow
that it can be approximated by any suitable peaklike
function [let us say c,(7), as was already done in Eq.
(64)].

The situation is different at A=1. As it follows from
Eq. (31), c¢,(7) decreases exponentially with 7 which
means that the above approximation [Eq. (64)] does not
hold. Fortunately, an exact analysis is possible in this
case.

At large g, t the function §,(7) takes the form

2

1 —x
Qg(‘r)z—zgx e %, (65)

where x =ge ™.
The mass spectrum is given by Egs. (20) and (65),

cg('r)zixzfore”e e (7)dr . (66)

The integral on the rhs of Eq. (66) converges rapidly, thus
allowing the replacement of the upper limit by infinity.
The final result looks like following:

1 apr= o —xeT. 1
n=o-x? [ Te¥e ei(ndr=-_Ulx) . (67

Together with Eqgs. (11) and (33), Eq. (67) gives the full
solution of the problem on the asymptotic mass spectrum
which evolves in this case simply by changing its scale
[the variable 7 appears in the combination x =g /g(7),
where go(7)=e"].

(ii) At A <1 we use the fact that ', >>1, which allows
the replacement the function c¢(7) by its asymptotic ex-
pression Eq. (57). Together with Eq. (44) one finds after
minute transformations,

. oC
cp(m)= 20, T V. (&), (68)
with
=1 r= _(&=n) |dn
v, (8) Vo fo exp 5 o (69)

Here

§=(rg—7)/Ty . (70)
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FIG. 1. The dependence of coefficients at
power asymptotics given in Table I is shown as
the function of A, (a) c¢;=C[7r]77, (b)
c;~C[t]t "', and (c) N~C[N]t".
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FIG. 2. The dependence of the monomer concentration on 7
for five types of condensation coefficients: (1) a,=1, (2)
a,=g'?, () a,=g'"? 4 a,=g*”, and (5) a, =g.

In deriving Eq. (59) we replaced the upper limit in the in-
tegral of Eq. (69) (7/T;— ).

At A=1, the above transformations are divergent at
n=0. The spectrum can be found within the logarithmic
accuracy,

_E=n?
c( )= \/1ra F f exp )
X(n—£)V In(1+9L,)d7n . (71)

VI. RESULTS AND DISCUSSION

The main attention above concentrated on the asymp-
totic behavior of mass spectra which is of major interest
in the theory of condensation and, on the other hand,
rather tedious for a numerical analysis. The initial stages
of condensation being of less theoretical and practical in-
terest may be more or less easily treated both analytically
and numerically.

The crucial step that allowed us to divide the whole
problem into two independent parts, (i) to find c¢,(7) and
7(t) (c; problem) and (ii) to find the mass spectrum (c,
problem) was the introduction of the new variable 7 that,
in addition, reduced the infinite set of nonlinear equations
(2)—(4) to the linear ones [Eqgs. (13) and (14)].

A. Monomeric concentration: c; problem

Figures 2—-5 show all the attributes of the solution to
the ¢, problem.

(1) The dependence of ¢; on 7 is shown in Fig. 2 for five
different types of the condensation coefficients: (i) a,= 1,
(i) o =g'73, (iii) @, =g (iv) @, =g*?, and (v) o, =g.
All the curves begln with a sharp increase at small T
(<V'7), then on reaching their maxima they approach
the asymptotic regimes (see Table I). The asymptotic
tails are typically negative powers of = [Egs. (57), (58),
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power exponents

number concentration

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

A

FIG. 3. The phase transition in condensing systems. The
behavior of source-enhanced condensing systems changes at
A=1: (a) the power exponents in 7 and ¢ dependencies of ¢, and
n [y, 71, and v, respectively (curves 1-3)] have discontinuities
in their first derivatives, (b) the number concentration grows un-
limitedly with time at ?»S% (curves 1-3) and remains finite in
increasing time at A > % (curves 4 and 5) and (c) the dependence
N, onA.
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FIG. 4. The dependence of 7 on time for
five values of A=0, I, 1, 2, and 1 (curves 1-5,
respectively).
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FIG. 5. The mass spectra in source-enhanced condensing systems: (a) A=0 (solid curve), k=—§~ (dash curve). The functions ¥, (§)
describe the shape of the peak [see Egs. (69) and (70)]. They are seen to differ from zero even at 7,>7. (b) The function
®(n)=(2a, /a,)c,(n), where =17, — characterizes the shape of the peak at A> 1 (here A=1). (c) The case A=1. The function

r

U (x) giving the form of the asymptotic mass spectrum [Eq. (67)] depends on the scaled variable x =ge ~".
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and (61)]. The exponent of the asymptotic decrease de-
pends on A and changes from y=1(1—A) at A<1 [Eq.
(58)] to y =A/(1—A) at A> 4. The function y(A) is con-
tinuous at A=1 while its first derivative has a discon-
tinuity (a kind of phase transition). Figure 3 illustrates
this phase transition by showing the dependence of y on
A [Fig. 3(a)].

At A=1 the asymptotic decrease becomes exponential.

(2) Figure 3(b) portrays the time dependence of the par-
ticle number concentration. The phase transition at A=1
reveals now more expressively: at A > 1 the number con-
centrations become finite at 7— o which means that the
degree of vapor-to-particle conversion is finite despite the
fact that the source produces new portions of condensing
vapor. The vapor excess is, however, consumed so fast
that no new particles have time to form. At A <1, the
number concentration grows unlimitedly with time. The
dependence of N (7=« ) on A is shown in Fig. 3(c).

(3) The dependences of 7 on ¢t for the above-mentioned
five models are displayed in Fig. 4. These functions serve
as the transition from 7 to the real time scale. In particu-
lar, this transition allows one to find the asymptotic time
behavior of ¢,(¢) and N (¢). The results are given in Table
I

B. Mass spectra: ¢, problem

In Sec. V, we showed that in source-enhanced condens-
ing systems the mass spectra are rather smooth curves.
Typically, these spectra look like waves with clearly ex-
pressed frontal peaks moving to the right along the mass
axis (Fig. 5). There exist two types of such mass spectra:

(1) If the condensation rate grows slower than Vg.
The shape of the peak in the mass spectra is described
mainly by the wuniversal function W, (n) where
1n=(1, —7)/T, [Egs. (69) and (70)]. The spectra are seen
to be rather smooth [Fig. 5(a)] and have tails at negative
1. The peak position defined by the equation 7,=r7
moves along the g axis to the right with increasing time
(and, therefore, 7 see Fig. 4).

(2) At A= the function W, loses its universality and
becomes independent on the width ', [Eq. (71)]. This
dependence, however, is very weak.

(3) The situation changes when the condensation rate
a, grows with g sufficiently fast (faster than g 172) " Then
a smooth polydisperse mass spectrum [Eq. (64)] forms,

(1)~ odcy(r—1,)
c(T)=—c(t—7,) .
g zag g
The time evolution of such spectrum [the models (iv)] is
shown in Fig. 5(b). The peak now is sharper and has no
tail at 7, > 7. '

(4) At A=1 the spectrum evolves by changing its scale
[Eq. (67), Fig. 5(c)].

VII. CONCLUDING REMARKS
We considered in detail the particle formation by con-

densation in the presence of a spatially uniform and con-
stant in time external source producing the molecules of a
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condensing vapor. We showed that for physically realis-
tic and for model condensation rates (typically growing
with the particle mass as its power) the mass spectra of
forming particles are described by rather smooth func-
tions linearly linked with the time dependence of the
monomer concentration. This result reduces the rather
complicated problem of solving an infinite set of non-
linear differential equations to the integration of a single
ordinary integro-differential equation. This procedure is
readily solvable even on a moderately powerful PC.

The most important physical consequence of the above
theory is the existence of two types of the mass spectra
behavior. When the condensation rate a, does not grow
very quickly with the particle mass (slower than V'g ), the
mass spectrum has at its front a peak not so clearly ex-
pressed (better to say, a nonintegrable peak) which moves
to the right along the mass axis. The number concentra-
tion of the aerosol particles reveals unlimited growth
with time.

At stronger dependencies of a, on g the maximum be-
comes integrable and sometimes can be replaced with a &
function. The most remarkable fact in this case is the
finiteness of the degree of gas-to-particle conversion: the
number concentration of the aerosol particles formed by
the condensation process remains finite despite the fact
that the source is producing new and new portions of the
condensing matter.

In both the above cases the mass spectrum has the
frontal maximum (integrable or nonintegrable) and a long
power tail [see Fig. 4 and Eq. (61)]. The monomer con-
centration decreases with time despite the presence of the
source. This is not a surprising fact, for the vapor con-
sumption grows with increasing particle size and the
source has no time to produce enough vapor molecules to
support the monomer concentration at a given level.

Primarily, this work was strongly motivated with a
necessity to create a sufficiently simple approach that
would allow attacks on much more complicated and
more realistic situations including binary mixtures (see
[15]), nucleation stages, and the presence of condensation
nuclei. Our theory also has its ramifications for certain
polymerization processes. Actually, similar systems have
been treated in polymerization kinetics [16—18], but typi-
cally without a source term (see e.g., [18]). We believe
that the simplifications made above are, in a sense, the
maximum admissible in allowing one to solve these prob-
lems.

ACKNOWLEDGMENTS

The authors wish to thank Dr. Charles Clement for his
very useful comments and advice concerning the style of
the paper and presentation of the results.

APPENDIX

Here we show how to transform Eq. (34) into Eq. (35).
The replacement of variables
r—s=x, r+ts=y

leads to the final result through the following chain of
equalities:
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fdrf ds exp[ — 1(r?—s? ——fd f2t

dy exp

Next, we calculate the integral entering Eq. (36)
= [ "cX(t)dt
g=[ et

® 7 2
=/ edr [ e 1’Zdﬁf’e Y247,
o 7 2
=2 e "ar [ /zd'rlf e dr, .
We introduce new variables,

t—7=

&5 t—m

or, resolving these equalities with respect to &, 1,6,

=7, 7,+7,=0

(=ftnte _nté—&  _£+6—n
2 ! 2 72 2 :

The Jacobian of this transformation is J =2. The in-
tegral & now takes the form,

_ 0(E+)
2

F= fowdgf;dne“g”fnigd()exp

The restrictions imposed on the intervals of variation of
the variables &, 1, and 6 follow immediately from the set
of inequalities: 0< 7, <7, <.

The integration over 0 is readily performed giving

g2 +2
2

4fd§fdn

exp

§+m
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Xy

2 | =2 [ 19X o=t ginh[ H(ex —x2)] .

Introducing the variable s =7 /§ yields

2
—%(s2+2s—1)

1

The integration over £ reduces this integral to the stan-
dard one,

= [® ds
F=V2r _—
fl (s +1)Vs2+25 —1
=2V'rrarctan(V2—1)= # .

Perhaps it will be useful for further studies to mention
that the functions ¢ (7) for the two models considered in
Sec. IV obey the following ordinary differential equations
of the second order:

1 1
¢i+é; |1+— |+=¢;=0
€117 ¢ c% 201

for the modela =1 and
1
c1+ +——-—O
C1

for the model @, =g. The solution of the latter equation
is given by Egs. (33) and (34).
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